
What makes an opinion leader: expertise versus popularity

Job Market Paper
For the latest version, please click here.

Theodoros Rapanos*

November 20, 2015

Abstract

This paper studies learning based on information obtained through social or professional

networks. Building on the framework first proposed by DeGroot (1974), agents repeat-

edly update their beliefs by weighting the information acquired from their peers. The

innovation lies in the introduction of dynamically updated weights. This allows agents

to weight a contact with poor information little at first, but more later on, if that con-

tact has in the meantime gathered better information from other, more knowledgeable

agents. The main finding is that individuals’ social influence will depend on both their

popularity (as captured by eigenvector centrality) and their expertise (as captured by

information precision) in a simple and intuitively appealing way. It is moreover shown

that even completely uninformed agents can contribute to social learning, and that un-

der some network structures, providing certain agents with better information could

actually lead society to worse assessments. The paper also discusses how the relation-

ship between expertise and popularity in a network affects the learning process.
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1 Introduction

Acquisition and aggregation of information is a critical part of the decision making process

of individuals, firms, organisations, and governments. As a rule, however, obtaining access

to the primary sources of information may be quite difficult, if it is feasible at all. Conse-

quently, most information reaches agents through secondary sources or contacts, who may

have themselves acquired it indirectly. Social and professional networks arise thus as a ma-

jor channel of information diffusion in a society.

The present paper focuses on identifying some determinants of social influence. What are

the characteristics of the individuals that get to lead public opinion? Are the beliefs of the

experts, or those of the most popular agents that have a greater influence in a society? Is it

the most popular individual who should be entrusted with passing on information or raising

awareness about an issue in the public?

In order to provide some answers to the above questions, this paper builds on a benchmark

model of social influence introduced by DeGroot (1974). The simple but compelling idea

behind this model is that agents update their beliefs by repeatedly communicating with their

neighbours, and weighting their information. There is, however, an important innovation

introduced here: Agents are no longer assumed to assign fixed weights to their peers, as

in the standard model. Instead, they update these weights every period, adapting them to

reflect the information their peers gain access to. Using this richer setup, it is shown that

each agent’s social influence stems from two components: a position-driven, popularity,

and an information-driven one, expertise. This new approach enables a social planner to

design targeted policy interventions based on the above characteristics, and evaluate their

impact. The rest of the introduction provides a short overview of the relevant literature, and

discusses the aforementioned points more thoroughly.

Individuals use information acquired through their networks in various facets of their lives.

The key role that social contacts can play in job search was documented in the benchmark

work by Granovetter (1973), and more recent evidence from empirical studies seems to

corroborate, if not strengthen this finding.1 Consumers often seek the advice of friends who

have a deeper knowledge or a better understanding of the relevant area before deciding

to buy a new computer or car. Even in everyday consumption decisions, information

transmitted through social networks can be crucial (see, for example, Moretti, 2011).

The importance of social networks as information transmission mechanisms has grown

1 See Ioannides and Datcher Loury (2004) for a comprehensive survey.
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over the last years due to the emergence of the digital social media. As recent evidence

suggests, people use online networks to exchange information on a broad variety of topics,

ranging from health issues and the use of medication (Lefebvre and Bornkessel, 2013) to

immigration decisions and life in a new country (Dekker and Engbersen, 2014).

Information aggregation —that is, how people combine information collected from various

sources— is also an important stage of the decision making process, and has occupied re-

searchers and scholars at least since the time of Condorcet (1785). Although in general a

distinct process, information aggregation is ineluctably tied to that of information acquisi-

tion: unless people are in a position to accurately track the pieces of information communi-

cated to them back to their original sources (which, as recent research suggests, it is not the

case; see for example Choi, Gale, and Kariv, 2008; Chandrasekhar, Larreguy, and Xandri,

2015), they are bound to treat already aggregated information that is passed on to them as

new.

There are two main paradigms in the literature, often referred to as fully rational or Bayesian

learning, and boundedly rational or naïve learning respectively. In practice though this dis-

tinction is not always straightforward, since several models encompass elements of both

approaches. The main idea behind the Bayesian benchmark is that agents are fully rational,

in the sense that they interpret and use in an optimal way any information that becomes

available to them, either through communication or through the observation of the actions

and the payoffs of their peers. Hence fully Bayesian learning not only entails the use of

Bayes’ rule by the agents when updating their beliefs and forming posteriors, but also en-

compasses the idea that agents can optimally extract information from others’ actions. As

(Bayesian) consistency would suggest, under some regularity conditions agents in large net-

works will converge to the same beliefs and/or actions, presumably the optimal ones.2

The Bayesian approach hinges on the assumption that agents possess the mental capacity

to optimally extract and aggregate information in the aforementioned way, or at least along

similar lines. Although in some cases this assumption may be plausible, empirical evidence

suggests that even in very small and simple network structures this may not be true when

repeated interaction is involved (Choi et al., 2008). In fact, observations from a recent field

experiment (Chandrasekhar et al., 2015) are compatible with the assumption that virtually

all subjects exhibit a non-Bayesian behaviour. In some cases, it may be actually challenging

2 Nevertheless, factors such as the existence of disconnected or weakly connected network components (Gale
and Kariv, 2003), excessively influential agents (Acemoğlu, Dahleh, Lobel, and Ozdaglar, 2010) or highly
unbalanced network structures (Mossel, Sly, and Tamuz, 2015) can lead society astray.
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even for the modeler to apply fully Bayesian analysis, especially if the assumption of com-

mon knowledge of the network structure is relaxed.

The present work adheres to the paradigm of boundedly rational learning. In particular,

agents are assumed to update their beliefs through a so-called average-based updating pro-

cess, first introduced by DeGroot (1974). In his seminal study, the author proposes a method

for how a group of individuals, such as a committee, exchange opinions and update their

beliefs about the value of some unknown parameter they wish to estimate. The process is

simple and intuitively appealing: Each member of the group assigns some weight (a degree

of “trust”) to each other member, and in every period they revise their opinion by taking a

weighted average of the beliefs of their peers. The weights can be subjective, and thus not

all members need to agree on them. Trust is not necessarily reciprocal, and some members

may even disregard completely the opinion of some other members of the committee. In

modern network theory terminology, this communication structure can be seen as a directed

and weighted network. As DeGroot shows, under some regularity assumptions (for example,

any piece of information should be able to flow through the entire network, irrespectively

of its origin), a consensus among the members of the group will be attained.

Based on DeGroot’s model, DeMarzo, Vayanos, and Zwiebel (2003) study the formation of

(political) opinions in the presence of what they refer to as persuasion bias. People, either

because they are not aware of the structure of the network, or because they lack the cogni-

tive ability or the time required to fully track the path that information has followed in the

network, fail to account for the repetition of the information they receive. Hence, due to

the influence of some prominently positioned individuals, their beliefs may be driven away

from both the true value of the parameter, and the society’s initial average beliefs .

Golub and Jackson (2010) maintain the same framework, but introduce a rigorous network-

theoretical framework, and a more standard networks-based approach. Their main finding

is that persuasion bias will be present even in arbitrarily large societies. Only if the influence

of prominent individuals goes to zero as the network grows can society learn efficiently. This

result shows that persuasion bias is not, in general, remedied by large numbers, suggesting

thus that the intuition behind Condorcet’s auspicious finding may no longer apply if some

members of the society receive disproportionately high attention.

The present work can be seen as an addition to the literature on average-based social learn-

ing, since it retains the spirit underlying the DeGroot model as well as its main idea: agents

revise their beliefs by simply weighting the beliefs of their peers. It differs, however, from
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the existing literature in a key aspect: the introduction of dynamically updated weights, that

enable agents to adjust the degree of trust they assign to their contacts to the flow of infor-

mation. Dynamic weights capture the intuitive idea that individuals may initially assign a

low weight to the belief of a peer who is uninformed or possesses low-quality information,

but which they can subsequently increase, if that peer acquires information from contacts

who are considered experts in the field, or simply have access to more accurate information.

The main findings are the following. First, it is shown that in the present model of learning,

as under DeGroot learning, agents’ beliefs will over time converge to a stable consensus in

strongly connected networks.

Second, again similarly to the DeGroot model, the influence of each agent’s initial beliefs in

the formation of the consensus belief can be obtained explicitly. Unlike, however, DeGroot

learning, the present aggregation process is no longer a “black box”, since the determinants

of each agent’s influence can be explicitly calculated. In particular, it is shown that it can be

attributed to three components: the agent’s popularity (expressed as his or her eigenvector

centrality in the network), the agent’s expertise (expressed as the precision of the informa-

tion he or she possesses), and a parameter that captures how information is distorted by

the network, and which is hence common for all agents in a given network. Interestingly,

and perhaps surprisingly enough, not only the relaxation of the assumption of fixed weights

does not increase the informational requirements for the calculation of social influences on

behalf of the modeler or the social planner, but in fact it makes it easier in cases where the

latter is not fully aware of the entire network structure.

Third, it is shown that agents with low initial expertise (i.e. low-quality information), and

even agents possessing no information at all initially, can play a crucial role in the learn-

ing process. This is a compelling feature that facilitates the study of networks where the

majority of information originates from a minority of individuals. This is a common em-

pirical observation in network analysis (see, for example, Galeotti and Goyal, 2010, and

the references therein). Moreover, it is a prediction that is in line with findings from the

Bayesian strand of literature (see, for example, Mueller-Frank, 2013), but perhaps also with

common intuition: individuals without any information or knowledge of their own are often

in a position to affect public opinion by propagating information or opinions that they have

acquired from more knowledgable contacts. Hence, although such agents merely act as con-

duits for the transmission of information, their contribution can be significant, especially if

they are centrally located or have direct access to expert agents. In contrast, under DeGroot

learning, agents without any information would either be completely ignored, since they
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would be given a zero initial weight that they would carry over forever thereon, or would be

given a positive but largely arbitrary weight, based on their neighbours’ assessment of their

future access to information. In the present model such issues are overcome by allowing for

weights to vary over time.

Finally, the breakdown of social influence into an information-driven, a popularity-driven,

and a (common) network-driven component allows room for the evaluation of policy inter-

ventions.

The rest of the paper is structured as follows: Section 2 introduces the general framework

of the model, and then provides a brief overview of some basic network-related concepts

that are used later on; readers familiar with economics of networks or graph theory may

harmlessly skip the latter part. The main part of the paper begins at Section 3 with the

introduction of a model of dynamic average-based learning; the belief-updating process is

presented and motivated. Section 4 studies the dynamics of the new process, establishes

convergence of beliefs, and presents the main theorem of the paper, which is used in Sec-

tion 5 to study the efficiency of target policy interventions. Section 6 concludes. Section A

of the Appendix provides the mathematical tools that are used throughout the paper. The

proofs of the propositions and theorems have been deferred to Section B of the Appendix.

2 The setup

2.1 The agents

Consider a society consisting of a finite number of individuals who would like to gather

more information about a parameter of interest or form an opinion regarding an issue they

need to make a decision on. The pattern of communication among the agent is captured by

a network G.

As in the rest of the literature on average-based updating, it will be assumed that the agents

are only interested in estimating the true value of the unknown parameter, and stick to the

stipulated updating process; they do not seek to maximize their social influence, nor do they

have something to gain from propagating a particular belief.

Before proceeding with the rest of the technicalities, it would be useful to provide some

guidelines about the notation used in this paper. Matrices shall be denoted with bold capital

letters, for example X, and vectors with bold lowercase letters, for example y. The (i,j)-th

element of matrix X shall be denoted with xij , and the i-th element of vector y with yi . All
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vectors are defined as column vectors, and thus transposed vectors, e.g. y>, will be row

vectors. Finally, if y in an n-dimensional vector, Dy shall denote the n × n diagonal matrix

with the elements of vector y on its main diagonal (and the rest of its elements equal to

zero).

2.2 The network

A network is modelled as a —potentially directed— graph G = 〈N ,E〉, where the set of

vertices or nodes, N := {1,2, . . . ,n}, represents a set of agents who can potentially interact

with each other, and the set of edges E ⊆ N 2 represents the links among them. In many

applications of network theory it is more convenient to represent a network using a matrix

G := [gij ](i,j)∈N 2 ∈ {0,1}n×n, where gij := 1 if there is a directed edge from node i to node j

(i.e. agent i is linked to agent j), and gij := 0 otherwise. In network theory terminology,

matrix G is referred to as the adjacency matrix of network G.

In the analysis in the following sections of this paper, the adjacency matrix G will represent

the pattern of communication and transmission of information across the network. Consider

any two agents i, j ∈ N . A link from agent i to agent j, gij = 1, has the interpretation that

agent i has access to agent j ’s belief. It shall be then said that agent i observes, pays atten-

tion to, or listens to agent j, or in network theory terminology, agent i is an in-neighbour of

agent j. Equivalently, it can be said that agent j receives attention from or is an out-neighbour

of agent i.3

Two important remarks are in order at this point. First, as the above discussion suggests,

attention may not be reciprocal: the fact that agent i can observe agent j ’s belief does not

necessarily imply that j is in a position to observe i’s belief. Hence the adjacency matrix G

will be, in general, non-symmetric. Second, it is reasonable to assume that every agent can

observe himself.4 The diagonal of G will thus consist of ones, that is, gii = 1 for all i ∈ N .

This assumption will be maintained throughout this paper and will not be stated explicitly

again.

The set of all agents that agent i pays attention to (that is, all the out-neighbours of agent i)

in network G constitutes the out-neighbourhood of agent i, and is denoted with DG(i). Using

3 This terminology has its roots in the drawing of networks as graphs (see, for example, networks A and B
in Example 1). A directed link from agent i to agent j means that i gives attention to j; hence j is an out-
neighbour of i. This of course implies that j receives attention from i; hence i is an in-neighbour of j.

4 In the terminology introduced above, this implies that every agent is an out-neighbour of himself.
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mathematical notation, for any i ∈ N

DG(i) := {j ∈ N |gij = 1}.

Notice that the out-neighbourhood of any agent is a non-empty set, since i ∈ DG(i) for every

i ∈ N .

The following terms are common in the networks literature, and will be used throughout

the analysis that follows.

Definition 1: Some Networks Terminology

� A directed walk in a network G is a sequence of (potentially repeated) nodes that

are sequentially connected via directed links. Formally, it is a sequence of nodes

〈i1, i2, . . . , iH−1, iH〉 in G such that gihih+1
= 1 for all h ∈ {1,2, . . . ,H − 1}.

� A directed path from node i1 ∈ N to another node iH ∈ N in a network G is a directed

walk consisting of distinct nodes. Formally, it is a sequence of nodes 〈i1, i2, . . . , iH−1, iH 〉

in G, with ik , il for k , l, k, l ∈ {1,2, . . . ,H}, such that gihih+1
=1 for all h ∈ {1,2, . . . ,H − 1}.

� A simple cycle of length H in a network G is a closed walk consisting of H distinct

nodes. Formally, it is a sequence of nodes 〈i1, i2, . . . , iH−1, iH 〉 in G such that gihih+1
= 1 for

h ∈ {1,2, . . . ,H}, with i1 = iH and ik , il for all other k, l ∈ {1,2, . . . ,H} with k , l.

� A network G is said to be strongly connected if there exists a directed path from any node

to any other node in G.

� The period of a strongly connected network G is defined as the greatest common divisor

of the lengths of its simple cycles.

� A strongly connected network is called aperiodic if its period is equal to 1, otherwise it

is called periodic.

Example 1. The networks shown in Figure 1 are strongly connected. A directed link (arrow)

indicates that the agent at its origin observes the information of the agent at its target; hence

information flows opposite to the direction of the arrows. To keep graphs as simple as possible,

and since all agents are assumed to observe themselves, self-loops have not been drawn. Observe

that while attention can be reciprocal, as it is in Network A, may not necessarily be the case. In

Network B, for example, agent 3 receives attention form almost everyone in the network, but

gives attention only to agents 2 and 6.
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Example 1: Strongly connected networks

Network A Network B

2.3 Popularity: the eigenvector centrality measure

Eigenvector centrality was first proposed by Bonacich (1972) as a measure of influence,

prestige, or popularity in a network. It captures the idea that what makes an agent important

in a network is how well-connected this agent is to other important agents. More specifically,

each agent’s eigenvector centrality is a weighted average of the eigenvector centralities of

his or her in-neighbours. That is, an individual is considered more influential if he or she

receives attention from influential individuals. A formal definition is provided below.

Definition 2: Eigenvector Centrality

Consider a strongly connected network G = 〈N ,E〉 with adjacency matrix G. The eigenvec-

tor centrality profile of network G is defined as the positive left eigenvector of G, that is,

as a vector c := [ci]i∈N > 0 satisfying

c>G = ρ
G
c> (1)

normalised so that

||c ||1 :=
n∑
i=1

|ci | = 1, (2)

where ρ
G

is the spectral radius of adjacency matrix G, and ||·||1 denotes the vector 1-norm.

The eigenvector centrality of agent i ∈ N is given by the element ci ∈ [0,1].
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The eigenvector centralities of the agents in Networks A and B introduced in Example 1 are

given below. In the following figures, the size of the nodes has been adjusted to represent

their eigenvector centrality.

Example 2. In network A, agents 1,3,5, and 6 are each given attention by three peers. Agent 1

is nevertheless less important than agent 5 under the eigenvector centrality measure. The rea-

son is that, although agents 1 and 5 have in common two peers that pay attention to them,

namely, agents 2 and 3, the third in-neighbor of agent 5 (i.e. agent 6) is more important than

the third in-neighbour of agent 1 (i.e. agent 4). By the same token, agent 3 is more important

than agent 5 because agent 1, who listens to agent 3, is more important than agent 2, who

listens to agent 5.

In network B, notice that agents 1 and 5 are equally important since the only peer that pays

attention to them is agent 2, and hence they both derive all their prestige or popularity from

this agent. The same holds true for agents 2 and 6, who are given attention only by agent 3.

Example 2: Eigenvector centralities

Figure 2.A

i ci

1 0.167

2,4 0.129

3 0.198

5,6 0.188

Table 2.A

Figure 2.B

i ci

1,5 0.094

2,6 0.173

3 0.319

4 0.146

Table 2.B

Eigenvector centrality can be potentially problematic as a measure of influence since it is
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self-referential, and as such, it may not be always well-defined.5 Nevertheless, the assump-

tion of strong connectedness is sufficient to guarantee that there is one and only one pos-

itive eigenvector associated with matrix G (see Section B.1 in the Appendix for a proof).6

Bonacich and Lloyd (2001) and Jackson (2008) provide a motivation for the use of eigen-

vector centrality as a measure of influence or prestige, and propose alternative measures

that can be used in the cases that the former is not well-defined. An algorithm based on a

variant of eigenvector centrality that does not presuppose strong connectedness, known as

PageRank, was used in the first versions of Google search engine to determine the order of

appearance of the search results (Page, Brin, Motwani, and Winograd, 1999, sections 2.4,

2.5 and 6).

2.4 Beliefs

The first part of the present paper studies the evolution of the beliefs of the agents in a net-

work through communication. The term belief shall be used to refer to an agent’s opinion or

accumulated information at a period of reference rather than to some (Bayesian) posterior.

This constitutes an abuse of terminology, since what will be referred to as “belief” in this

paper is technically a statistic for the accumulated information. This term, however, has

been extensively used, and has become standard in the average-based updating literature in

the last decade (see, for example, DeMarzo et al., 2003; Jackson, 2008; Golub and Jackson,

2010, 2012; Acemoğlu, Como, Fagnani, and Ozdaglar, 2013). Thus for conformity reasons,

and in order not to cause confusion, the (ab)use of the term belief is maintained in the

present work as well.

The choice to follow the path set by the existing literature, and not to involve priors in the

analysis, should not be taken as a direct or indirect statement that priors are unimportant

or that they should not be a part of a statistical updating process. This is done because

the purpose of the present work is to study how information is transmitted and accounted

for through a network, rather how this information is incorporated into the existing, prior

beliefs of the agents. These initial beliefs may have been formed based on past observations,

5 To see this, notice that if ρ−1
G

G is interpreted as a linear mapping, then c can be seen as a fixed point.
There are mappings with no real (non-zero) fixed points, mappings with real but non-positive fixed points,
and mappings with more than one non-negative fixed points. Any of the above would be problematic as a
measure of centrality.

6 Recall that eigenvectors are unique up to the relative magnitude of their entries. Since c is an eigenvector of
matrix G, any positive multiple of c is also an eigenvector of G, and contains exactly the same information
about G as c does; hence it could be also considered a vector of eigenvector centralities. Normalisation
(2) serves only to uniquely pin down agents’ centralities, and to facilitate the definition of some measures
introduced in the sections that follow. Normalising eigenvector c with respect to its 2-norm, so that ||c ||2 :=√∑n

i=1 |ci |
2 = 1, is also quite common. The results in this paper are not affected by that particular choice.
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information from other sources, accumulated knowledge or experience, or even be arbitrary.

Furthermore, nothing prevents agents in an average-based updating model from using the

information eventually accumulated through this process to update their existing priors in

some boundedly Bayesian or semi-Bayesian way.

The reader may have noticed that no rigorous definition of beliefs has been given so far, nor

has it been specified how they are represented mathematically. Depending on the context,

beliefs can be represented as a percentage, a value (expressed as a number), a set of values

(expressed as a vector) or even as more general objects, such as functions or probability

distributions. In fact, the model discussed here can admit as beliefs any objects that are

members of some convex subset B of a linear space.7

Golub and Jackson (2010) examine the relationship between the influence of individuals

or small groups in large societies and the efficiency of the learning process. Since beliefs

per se are not directly the focus of the paper, they assume for simplicity, and without loss

of generality, that beliefs can be represented by a number in the unit interval, B = [0,1].

For the purpose of the paper by DeMarzo et al. (2003), who study the phenomenon of uni-

dimensional opinions, it makes better sense for agents’ beliefs to be expressed as vectors

whose elements represent their view or opinion on a series of m issues; in that case B =Rm

for some m ∈ N∗. In the seminal work by DeGroot (1974) the objects being updated are

subjective probability distributions for the value of some parameter of interest, and hence

B is a space of probability distributions. It becomes hence apparent then that the type of

updating process discussed in this paper is quite versatile, and can be adapted to various

setups. Note also that the findings of the above papers (consensus, speed of convergence,

wisdom of the crowds) do not depend on the representation of the beliefs, apart of course

from those that directly concern the structure of the beliefs per se.

2.5 Expertise

It will be also assumed that agents assign a degree of certainty, or precision, to their be-

liefs, which will be referred to as expertise. This is a non-negative number that expresses

how much they trust the information they possess. Agents are assumed to start with some

7 A constructive approach can be helpful in understanding why this requirement is sufficient for the process
to be well-defined. Firstly, the space of beliefs B must have a basic structure, in order for the process of
aggregation of beliefs to be both well-defined, and conceptually meaningful. This structure can be imposed
by assuming that this space is abelian under addition. Yet, since the updating process to be discussed below
will be based on the averaging of beliefs, with the weights being real numbers, the operation of scalar multi-
plication needs to be defined; hence the linear space. The convexity assumption simply guarantees that the
object resulting from the updating process will still be some valid belief.
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initial expertise, which changes as they communicate with their neighbours and exchange

opinions. Hence, after a round of communication, the expertise of individuals who observe

experts should be expected to increase more than that of individuals who do not have access

to experts.

Initial expertise on the topic of interest may differ across agents for a variety of reasons, such

as access to more trustworthy first-hand information, experience, or education, to mention

some. In modelling terms, expertise can be captured by some appropriate parameter or

statistic, depending on the application. Consider the case in which the initial belief of each

agent i is equal to some noisy signal si that he or she receives about the true value of the pa-

rameter in question. Then the precision associated with it can be defined as some sufficient

statistic for the variance of agent’s signal-generating distribution (see Example 3 below).

3 The model

Assume that there is some unknown state of the world, say θ, that agents would like to

estimate, in order to take a decision or a make a choice in an efficient way. It is assumed

that agents have some initial beliefs, to be denoted with bi(0) for each agent i ∈ N . In the

simplest case, these initial beliefs are equal to some unbiased signal si about the true state

θ. These signals will be assumed to be independent, but not identically distributed.

Agents update their initial beliefs through communication with their neighbours. In each

round, they ask their out-neighbours for their beliefs, as well as an assessment of how pre-

cise or accurate these beliefs are. Then they update their own beliefs by weighting the

information they receive based on their peers’ expertise. The belief of agent i after t rounds

of communication, where t ∈ {0,1,2, . . .}, will be denoted with bi(t) ∈ B.

Example 3. Consider a group of prospective investors who would like to predict the future

price movement of the stock of an import company, say, Harry Lime & Co. This will depend

on the company’s quarterly earnings report, to be announced in the near future. Assume that

the company’s profits were in fact v∗, but investors do not have access to this information yet.

Instead, they each observe some noisy signal vi about profits, with vi ∼ N
(
v∗,σ2

i

)
. These sig-

nals are independent from each other (vi⊥vj), and potentially heterogeneous (σi , σj for i , j).

Smaller variances reflect that some investors may follow closer the developments in the imports

sector, or may have access to inside information.

In this example, investors’ initial beliefs can be assumed to be equal to the signals they observe,
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bi(0) := vi , and their expertise can be defined as the inverse of the variance of their signal,

πi(0) := 1
σ2
i
.

3.1 The canonical average-based updating process

It is useful to begin by presenting the canonical average-based updating process, due to De-

Groot (1974). As described above, agents start with some initial beliefs which they update

by consulting with their out-neighbours. Before the communication process begins, each

agent i ∈ N assigns a weight γij ∈ [0,1] to each out-neighbour j ∈ DG(i), including himself,

so that
∑n
j=1γij = 1. These weights reflect the relevance or trustworthiness of the opin-

ion of each neighbour; they may be derived from an objective formula or simply be some

—potentially subjective— assessment of the informational value contained in each belief.

In DeMarzo et al. (2003) the weight γij is referred to as the direct influence of agent j on

agent i. If j <DG(i), meaning that agent i cannot observe agent j, the corresponding weight

is set equal to zero: γij := 0.

The DeGroot model can generically admit any weights γij ∈ [0,1]. Of particular interest,

though, is the case in which the weights that agents assign to their out-neighbours are

consistent, in the sense that they are equal to relative expertise of each neighbour.8 It is

also a quite plausible choice for the agents in the absence of information about the network

structure beyond their out-neighbours. In that case, the direct influence of agent j on agent i

(the weight that agent i assigns to agent j) will be given by

γij =
gijπj (0)∑n
k=1 gikπk(0)

. (3)

Once the weights have been set, the communication process begins. In every period t ∈

{1,2, . . .} each agent i observes the beliefs of his or her out-neighbours j ∈ DG(i), and revises

his or her beliefs accordingly. In particular, the new belief of agent i will be a weighted

average of the previous-period beliefs of his or her out-neighbours

bi(t) =
n∑
j=1

γijbj(t − 1)

or, using matrix notation,

b(t) = Γ b(t − 1) (4)

8 Notice that under an appropriate definition of expertise, the first-period weights will be the Bayesian or
“objective” ones, as in Examples 3 and 4.
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where Γ := [γij ](i,j)∈N 2 is the matrix of weights, and b(t) := [bi(t)]i∈N is the belief profile in

period t. Observe that Γ is, by definition, a row stochastic matrix.9 Notice that in the context

of Example 3, the belief of each agent i after the first round of communication, bi(1), will

be a sufficient statistic for v∗, given the information that agent i has access to through his or

her neighbours.

By iterating on process (4) we can express the belief profile in period t as a function of the

initial beliefs

b(t) = Γ tb(0).

It follows that the cumulative weight assigned by agent i to agent j following t rounds of

communication, will be given by the (i,j)-th element of matrix Γ t, denoted with γij(t). The

limiting belief profile can be calculated then as a function of the matrix of weights, Γ , and

the initial belief profile, b(0), as

lim
t→ +∞

b(t) = lim
t→ +∞

Γ tb(0). (5)

The limiting belief of agent i will be therefore given by

lim
t→ +∞

bi(t) =
n∑
j=1

lim
t→ +∞

γij(t)bj(0). (6)

A version of the main result in DeGroot (1974), adapted to the context of the present paper,

is given below.

Proposition 1: Reaching a Consensus (DeGroot 1974)

Assume that G is strongly connected and aperiodic, and agents follow the average-based

updating process described by expression (4). Then, for all i, j ∈ N , the cumulative weight

assigned by agent i to agent j in the limit is given by

γ
(∞)
j = lim

t→ +∞
γij(t) (7)

where γ(∞)
j is the j-th element of the left eigenvector γ(∞) of matrix Γ . In DeMarzo et al.

(2003), this limiting weight is referred to as the social influence of agent j.

The above proposition readily gives rise to three remarks. First, if the stipulated condi-

9 A non-negative square matrix A ∈Rn×n+ is said to be row stochastic if the elements of each of its rows sum up
to 1, that is, if A1n = 1n, where 1n is an n-dimensional vector of ones. This is why such matrices are often
called right stochastic. Similarly, a non-negative square matrix A is called column stochastic or left stochastic if
its columns sum up to 1, that is, if 1>n A = 1>n .
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tions are met, each agent i will have the same limiting influence on all other agents in the

network, and hence the term social influence of agent i. Indeed, as expression (7) suggests

lim
t→∞

γij(t) = lim
t→∞

γhj(t) for all i, j,h ∈ N . (8)

Notice, of course, that different agents will have in general different social influences, that

is, γ(∞)
j , γ

(∞)
k for j , k. As (7) implies, all rows of matrix Γ t will be identical in the limit,

and more specifically

lim
t→ +∞

Γ t = 1n

(
γ(∞)

)
>.

Second, it follows from expressions (6) and (7) that all agents will have the same limiting

beliefs, or as it shall be said hence forth, they will reach a consensus.10 In particular, for any

i ∈ N it will hold

lim
t→ +∞

bi(t) =
n∑
j=1

γ
(∞)
j bj(0).

Third, observe the vector of social influences, γ(∞), can be seen as a vector of weighted

eigenvector centralities. From a technical (although not a conceptual) point of view, it is

essentially the stationary distribution of a homogeneous and aperiodic Markov chain with

transition matrix Γ .11

3.2 The dynamic average-based updating process

3.2.1 Motivation and preliminaries

In some cases though it would be more reasonable to assume that the weights agents’ assign

to their neighbours are not constant but rather change based on how reliable the second-

hand information the latter have access to is. Consider, for example, a person who has to

decide whether to accept or turn down a job offer, and asks the opinions of his friends and

colleagues. It may be the case that one of them used to work in the past for the firm making

the offer, and she has thus some partial but perhaps outdated information about it. Yet she

may still be in contact with her former colleagues at the firm, whom she may contact. It

would make therefore sense for the prospective employee to place some rather moderate

10For a formal definition of consensus, see Definition 4.
11This is a standard result from Markov chains theory, and shall not be discussed further since it is out of the

scope of this paper. For a more detailed discussion, see, for example, Section 5 in DeGroot (1974) and the
references therein. Moreover, a similar, but more general approach is used to analyse the dynamic average-
based updating process introduced in this paper, so the reader is referred to Section 4 for a motivation and a
more technical analysis.
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weight on the opinion of his friend, but increase after the latter has consulted with her more

informed contacts. Similar arguments could apply, among other, in the case of a prospective

buyer of a house in a neighbourhood he has never lived in, a student who has to decide

whether to pursue post-graduate education or work in the industry, and a first-time traveller

to a holiday destination.

More generally, assume that an agent i ∈ N has to decide how to weight the opinions of his

out-neighbours j ∈ DG(i). It could be the case that one of them, agent j, is less well-informed

compared to other out-neighbours of agent i, but she is able to observe a third agent, k, who

is an expert in the issue in question, and whom agent i cannot directly observe. In that case

it would make sense for agent i to assign a small weight to agent j in the first round of

communication, but a larger one in the subsequent rounds, since by then agent j ’s belief

will have incorporated information from her better-informed friend, agent k. Analysing this

problem using the canonical average-based updating process discussed above is not possible

since matrix Γ has been assumed to be fixed.

Another implication of the fixed-weights assumption is that agents with no reliable first-

hand information (that is, zero initial expertise) will be completely ignored, and thus will

play no role in shaping public opinion. It would be reasonable though to consider that such

agents can have a significant, albeit indirect, influence by simply spreading information

they acquired from their out-neighbours. This case is of particular interest when it comes

to agents who occupy a prominent position in the network, but rely on the their peers for

information on a topic.

The aforementioned issues could in principle be addressed within the canonical average-

based updating model, for example by letting agents weight their neighbours based on the

precision of the information the latter are expected to receive in future periods. Such an

approach though could be highly problematic. This not only would increase distortion due

to inappropriate weighting of information, but also the weights used would have to be quite

arbitrary; using some “correct” or “objective” weights would require advance knowledge of

the information precision of ones’s neighbours, and that of the neighbours of their neigh-

bours, and so on, which would effectively translate into a requirement for full knowledge

of the network structure. The updating process to be introduced in this section, instead,

addresses the above problems by allowing for weights that vary over time.

Another important question that the model proposed here can help us answer, is what makes

an agent influential in a network. In the framework used in our analysis there can be two
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sources of influence: network position, or popularity, and information precision, or exper-

tise. It is not straightforward however how these attributes combine to determine the social

influence of each agent. Under what conditions would a relatively badly informed or non-

expert, yet centrally positioned agent, be more influential than an expert who is not in the

spotlight? How much more influential would the former be? Up to what extent can peo-

ple with a high degree of knowledge or specialisation in an area rely on their expertise to

stir public opinion, disregarding social networking? Although the canonical model does not

provide direct answers to the above questions, its dynamic counterpart introduced in this

section provides a more suitable framework to study these issues.

In order for this to be achieved, we need to take a step backwards, and study how the

weights assigned to neighbours’ opinions, or the the direct influencesγij as called above, are

determined in the first place. That is, we need to decompose the matrix of direct influences

Γ into a part depending only on the information or knowledge of the agents, and a part

depending only on the position of the agents in the network. The following assumption

simplifies the analysis to follow.

Assumption 1. For every agent i ∈ N there exists some agent j ∈ DG(i) such that πj (0) > 0.

Assumption 1 states that every agent i has at least one out-neighbour j (who could poten-

tially be himself) who receives an informative signal (πj (0) > 0). The purpose it serves is to

keep technicalities and notation at a minimum, and does not qualitatively affect our results.

From a practical point of view it is not a very restrictive assumption, since in most applica-

tions it would be reasonable to assume that agents have some direct or indirect access to

some information, even arbitrarily inaccurate, about the value of the unknown parameter.

A sufficient, although not necessary, condition for this to hold is that every agent places

positive precision to his initial belief, that is, π(0) > 0n. This is satisfied if it is assumed that

every agent receives some signal with finite variance about the true value of the unknown

parameter. Assumption 1 will be assumed to hold for the remainder of this paper, and it will

not be explicitly reiterated in the theorems and propositions to follow.

3.2.2 The process

With the technicalities in order, the model can be now introduced. At the beginning of each

period t ∈ {1,2, . . .}, every agent i ∈ N collects from each out-neighbour j ∈ DG(i) a report(
bj(t−1),πj(t−1)

)
consisting of that neighbour’s previous-period belief bj(t−1) and the cor-

responding accumulated expertise πj(t−1). Then, based of these reports, agent i updates his
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or her belief and expertise (i.e. the precision assigned to that belief). The updating process,

and how these beliefs and precisions are formed, are described below.

As discussed above in this section, in the initial period, t = 0, agents hold beliefs b(0),

with the corresponding precisions being π(0).In the first round of communication, agents

exchange information of the form
(
bj(0),πj(0)

)
in the manner described above. Agent i’s

updated belief in period 1, bi(1), will then be a weighted average of the beliefs reported

by his neighbours, with the weight γij(1) assigned to each belief being equal to its relative

initial precision. In the notation introduced above

bi(1) =
n∑
j=0

γij(1) bj(0) =

n∑
j=0

gijπj (0)∑n
k=0 gikπk(0)

bj(0).

Up to this point the process is almost identical to the standard average-based updating pro-

cess à la DeGroot presented in Section 3.1. The difference lies in the assumption that, under

the current process, agents update not just their beliefs per se, but also the corresponding

precisions. The precision πi(1) that agent i places to his or her updated belief after the first

round of communication, bi(1), will be assumed to be simply the sum of the initial expertise

of all his or her out-neighbours, including agent i’s own initial expertise, πi(0):

πi(1) =
n∑
j=0

gijπj(0).

This updating process is repeated ad infinitum. In the second round of communication,

agent i inquires with his or her out-neighbours j ∈ DG(i) about their new beliefs and ex-

pertise,
(
bj(1),πj(1)

)
, and based on these reports revises his or her belief once more. The

new weights assigned to each belief reported are calculated based on neighbours’ updated

precisions, πj(1); hence the precision given to the new belief bi(2) will be the sum of these

precisions.

In general, the belief of any agent i ∈ N in period t ∈ {1,2, . . .} (that is, after t rounds of

communication) will be given by

bi(t) =
n∑
j=0

γij(t) bj(t−1), (9)

where

γij(t) :=
gijπj(t−1)∑n
k=0 gikπk(t−1)

(10)

denotes the relative weight that agent i ∈ N places on the belief reported by agent j ∈ N in
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the t-th round of communication. Following the terminology introduced by DeMarzo et al.

(2003), γij(t) will be referred to as the direct influence of agent j on agent i in period t.

Unlike, however, the standard average-based updating process, it should be apparent from

expression (10) that in the model introduced here the direct influences will not be constant

over time, and hence the time index t. Notice of course that if agent i does not observe

agent j, then γij(t) = 0 for every t ∈N since gij := 0.

Dynamic weights γij(t) are a result of precisions being updated every period. The aggregate

precision attached by each agent i to his new belief in period t will be assumed to be the

sum of the precisions of the beliefs reported by his neighbours that period

πi(t) =
n∑
j=0

gijπj(t−1). (11)

Updating rule (9) can be expressed in matrix form as

b(t) = Γ (t)b(t−1),

where Γ (t) :=
[
γij(t)

]
(i,j)∈N 2

is the matrix of direct influences in period t.

Similarly, agents’ aggregate precisions in period t can be written in vector form as follows

π(t) = Gπ(t − 1)

or as a vector-valued function π(t), with π :N→Rn+

π(t) = Gtπ(0)

for any given vector of initial precisions π(0).

Now the dynamic updating procees introduced in this paper can be defined formally.

Definition 3: The Dynamic Average-based Updating Process

Agents are said to follow the dynamic average-based updating process if their updated be-

liefs after each round of communication equal a weighted average of the beliefs reported

by their out-neighbours (including themselves), where the weight assigned to each belief

is equal to the relative aggregate precision associated with it. Using mathematical nota-

tion, agents’ beliefs in period t ∈ {1,2, . . .} (that is, after t rounds of communication) can

be written as

b(t) = Γ (t)b(t−1) (12)
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where the matrix of agents’ direct influences is given by

Γ (t) =
[
(Gtπ(0)1n

>) ◦ In

]−1[
G ◦1n(Gt−1π(0))>

]
(13)

and A ◦B denotes the Hadamard product of matrices A and B.12

It would be useful at this point to express the belief profile b(t) in any period t ∈ {1, 2, . . .} as

a function of the initial belief profile b(0). By recursive backwards substitutions, expression

(12) can be written as

b(t) = Γ (t) Γ (t − 1) · · · Γ (1)b(0). (14a)

or, in more compact form13

b(t) =
t∏

τ=1

Γ (τ)b(0) (14b)

The cumulative influence, or simply influence wij(t) of agent j on agent i after t rounds of

communication is defined as the (i,j)-th element of matrix W(t)

wij(t) :=
[
W(t)

]
ij

where

W(t) :=
t∏

τ=1

Γ (τ). (15)

Hence the belief updating process given by expressions (14a, 14b) can be written as

b(t) = W(t)b(0) (16)

12The Hadamard product of two equidimensional matrices is the matrix of the products of their respective
elements. For a formal definition as well as some properties that are used in the proofs of the statements in
this paper, see Section A.1 in the Appendix.

13Since matrix multiplication is generally non-commutative, the order of multiplications in the product pre-
scribed by the product operator (Π) is not uniquely defined. In this paper, however, it shall be used to denote
the so-called backwards matrix product, that is

t∏
τ=1

X(τ) := X(t)X(t-1) · · · X(2)X(1)

for some X ∈Rn×n+ . A brief discussion of these products, as well as some additional references, are provided
in Section 3.3.
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It would be useful at this point to summarise the updating process introduced in this sec-

tion. As described by expression (12), each period agents form their beliefs by weighting

the (previous period) beliefs of their out-neighbours. Expression (13) stipulates what these

period-specific weights are: The weight that agent i assigns to the belief of each neighbour j

in period t is equal to the accumulated expertise or precision of neighbour j in period t, nor-

malised by the sum of the accumulated precisions of all neighbours of agent i that period.

In any period t, the element wij of matrix W(t) expresses how much agent i’s belief has been

affected by agent j ’s initial belief over the course of all past periods.

3.2.3 Timing

At this point it would be useful to summarize the timing of the dynamic average-based up-

dating process. Each agent i ∈ N starts with initial belief bi(0) to which he assigns precision

πi(0). The belief profile of the agents at the beginning of each period t ∈ {1, 2, . . .} is de-

noted with b(t-1), and the corresponding precisions with π(t-1). The timing of the updating

process that takes place every period t is the following:

[1] The t-th round of communication takes place. Agent i collects from each out-neighbour j

a report of his or her previous period beliefs and precision (expertise), that is, a pair(
bj(t-1), πj(t-1)

)
∈ B ×R+ for every j ∈ DG(i).

[2] Agent i updates the weight he or she assigns to each neighbour j (i.e. the direct

influence of agent j on agent i) γij(t-1) to γij(t), according to expression (10)

[3] Agent i updates his or her belief bj(t-1) according to (9). The new belief, bj(t), is the

weighted average of the beliefs bj(t-1) reported by agent i’s out-neighbours, using the

new weights γij(t) calculated in stage [2] above.

[4] Agent i calculates the precision of his or her updated belief as shown in expression

(11). The new precision πi(t) is simply the sum of precisions of his or her out-

neighbours (including own-precision) reported in stage [1] above.

Hence, “beliefs in period t” or “expertise in period t”, b(t) and π(t) respectively, shall refer

to the belief and precision profiles of the agents at the end updating process, and after all

communication has taken place in period t.
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3.3 A note on backward matrix products

Note that although the updating rule stipulated by expressions (14) may be reminiscent of

an inhomogeneous, or as it is sometimes called, a non-stationary Markov chain, it is in fact

a different process. First, from a conceptual point of view, the process described in this pa-

per is very different from an inhomogeneous Markov chain. Observe that, unlike a Markov

chain, the dynamic average-based updating process is entirely deterministic. Moreover, the

elements of the matrix of direct influences, Γ (t), represent weights, and not transition proba-

bilities, as the elements of a Markov matrix M(t) do. Consequently, the object being updated

is a vector of beliefs b(t), not a probability distribution p(t) as in the case of a Markov chain.

Hence, although p(t) is by definition a stochastic vector, this will not be true in general for

belief profile b(t).

Second, from a technical perspective, recall that the dynamics of an inhomogeneous Markov

chain are captured by what is often referred to as a forward product of stochastic matrices,

that is, a product of the form M(1)M(2) · · · M(t). The distribution in period t will be thus

given by

p(t) = p(0)M(1)M(2) · · · M(t).

Recall, however, from expression (14a), that the dynamic average-based updating process

is described by a backwards product

b(t) = Γ (t) Γ (t − 1) · · · Γ (1)b(0)

As non-commutativity of matrix multiplication would suggest, these two processes are dif-

ferent both in dynamics and in asymptotics. Hence, the resulting beliefs (or “marginal

distributions”, if it is a Markov chain) in any time period will be in general different under

each process (b(t) , p(t) for t ∈ {1, 2, . . .}), even if the starting points and all transition

matrices are identical (b(0) = p(0) and Γ (t) = M(t)). Backwards products, moreover, depend

more heavily on the first matrix in the sequence, Γ (1), than forward products do on M(1).14

14Unfortunately, although the literature on forward matrix products is quite rich, there is a dearth of studies on
backwards products, perhaps due their more limited applications (namely studying aspects of Markov Decision
Processes, and distributed algorithms, aside from DeGroot-type updating). Chatterjee and Seneta (1977),
(Seneta, 1981, chapter 4.6), and Leizarowitz (1992) provide some sufficient conditions for convergence;
Anthonisse and Tijms (1977) and Federgruen (1981) study the rate of convergence of such sequences. The
author of the present paper is not aware of any work providing an explicit formula for the limit of convergent
sequences of backward products, analogous to those we have for forward products (see, for example, Isaacson
and Madsen, 1976, Theorem V.4.7). The proofs in the present paper are based on results derived in the
aforementioned papers, as well as on certain results from the Markov chains literature that do not depend on
the direction of the matrix product.
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Technically, the canonical average-based updating process à la DeGroot is also described

by a backwards product (and should be thought of as such). Since, however, the matrix

of direct influences is constant over time (Γ (t) := Γ), the standard results for homogeneous

Markov chains can be used in that case.

4 Information exchange dynamics and convergence of beliefs

4.1 Reaching a consensus in the dynamic model

This section studies the conditions under which a common belief arises in the network.

Although the analysis is asymptotic, it may still be a very good approximation of the finite

belief and influences dynamics, especially in the cases where convergence is fast.

Definition 4: Consensus

It is said that the agents in a network G reach a consensus if for any initial belief profile

b(0) ∈ Bn, and any vector of initial precisions π(0) ∈Rn+, it holds

lim
t→ +∞

(
bi(t)− bj(t)

)
= 0 for all (i, j) ∈ N 2. (17)

If moreover there exists some belief b(∞) ∈ B such that

lim
t→ +∞

bi(t) = b(∞) for all i ∈ N (18)

the consensus shall be called definitive, and b(∞) will be referred to as the consensus belief.

Otherwise, the consensus will be called oscillatory.

As expression (17) suggests, a consensus is reached if after any —potentially arbitrarily

large— number of communication rounds, all agents end up holding the same beliefs with

each other. Notice that this does not automatically imply that these beliefs will be constant

over time; it could be the case that all agents change their beliefs synchronously every

period, or more accurately, keep oscillating indefinitely among a number of different beliefs.

Interestingly enough though, it turns out that the dynamic average-based updating process

discussed here cannot lead to oscillatory consensuses. The following result is an immediate

application of Theorem 1 in Chatterjee and Seneta (1977).
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Proposition 2: Stable Beliefs in the Limit

Consider a strongly connected network G, and suppose that agents N reach a consensus

by following the dynamic average-based updating process stipulated in Definition 3. Then

this consensus must be definitive.

Hence, if beliefs end up being identical across agents, they will also be constant over time.

For the remainder of the paper, the qualifier definitive will be omitted; since there can be no

oscillatory consensuses in the current setup, it should be clear that the term consensus will

refer to definitive consensuses.

The result below establishes convergence of the dynamic average-based updating process.

Proposition 3: Convergence

Consider a strongly connected network G = 〈N , E〉, and assume that agents follow the

dynamic average-based updating process. Then there exists a unique stochastic vector

w(∞) :=
[
w

(∞)
1 , w

(∞)
2 , . . . , w

(∞)
n

]>
such that15

lim
t→ +∞

wij(t) = w(∞)
j (19)

for all i, j ∈ N . The limiting weight w(∞)
j is called the social influence of agent j. It follows

that the agents in G will reach a consensus, with the consensus belief b(∞) ∈ B given by

b(∞) =
n∑
j=1

w
(∞)
j bj(0) (20)

Proposition 3 suggests that if agents follow the communication process introduced in Def-

inition 4, they will all end up having the same belief about the state of the world θ∗. It is

moreover shown that the consensus belief will be a weighted average of the agents’ initial

beliefs, with constant weights. This implies that, asymptotically, the impact of each initial

opinion bi(0) will be the same on all agents in the network, irrespectively whether they can

directly observe agent I or not.

Although, as discussed above, there is no general formula for the limit of such a sequence, in

this case the consensus beliefs can be computed directly using some “direction-free” results

15A vector y is said to be a stochastic or probability vector if it is non-negative, and its elements sum up to 1,
that is if y ∈ [0, 1]n and

∑n
i=1 yi = 1.
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from matrix algebra.

Theorem 1: The Determinants of Social Influence

Assume that network G is strongly connected, and agents follow the dynamic average-

based updating process stipulated in Definition 3. Then the social influence of each agent i

is equal to the product of their eigenvector centrality and their relative initial precision,

adjusted by a network effects multiplier, that is

w
(∞)
i = αc,π ci π̃i(0) (21)

where

ci is agent i’s popularity (eigenvector centrality)

π̃i(0) := πi(0)∑n
j=1 πj(0) is agent i’s relative initial expertise (precision), and

αc,π := α(c, π(0)) =
∑n
j=1 πj (0)∑n
j=1 cjπj (0) is a scalar, common for all agents in a given network,

that captures the network effects or the distortion in agents’ influences induced by the

network.

This result is quite interesting since it shows that the social influence of each agent under

the dynamic average-based updating process depends only on his or her position in the net-

work or popularity, as captured by eigenvector centrality, and on his or her relative initial

expertise (that is, how precise their information is relative to that of the other agents). It

also disentangles these two effects in a clear and straightforward way.

Example 4. A group of economists planning to attend a conference are reviewing their travel

options. The most economical option would be to fly the local airline, Carcosa Air, but a severe

delay could cause them to miss their connection flight. In fact such delays occur with proba-

bility p∗, unknown to the prospective travellers. Before making a decision, the economists can

communicate with their friends in order to exchange information.

In this example, agents’ initial expertise or precision, πi(0), can be taken to be the number of

times they have flied Carcosa Air in the past, while their initial belief about the probability of a

severe delay, bi(0), can be the percentage of their past flights that were delayed.16.

16Notice that the parameter of interest, that is the probability of delay p∗, can be seen as the (unknown)
success probability of a draw from a Bernoulli distribution with support Ω = {0 (on time), 1 (delayed)}. Then
the dynamic average-based updating process described in Definition 3 would be the optimal information
aggregation process in the absence of persuasion bias. In fact, expression (12) can be derived from the
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Nodes representing agents with a higher degree of expertise are depicted in darker colours in

Figure 4.B. Agents’ popularity (ci), initial relative and absolute expertise (π̃i(0) and πi(0)), as

well as their social influence at the consensus
(
w

(∞)
i

)
, are given in Table 4.

Example 4: Social influence

Figure 4.B

i ci π̃i(0) (πi(0)) w
(∞)
i

1 0.094 0.222 (14) 0.154

2 0.173 0.111 (7) 0.142

3 0.319 0.048 (3) 0.112

4 0.146 0.206 (13) 0.221

5 0.094 0.270 (17) 0.188

6 0.173 0.143 (9) 0.183∑
1 1 (63) 1

Table 4.B

In the small society of this example, the individual with the highest expertise is agent 5, while

the most popular one is, by far, agent 3. Yet the most influential one is agent 4, who ranks third

in expertise, and just fourth in popularity. As this example suggests, in general it is the agent

who has the “right” (for that society) mixture of expertise and popularity that gets to influence

public opinion the most. Agent 5 is the expert here, but she is rather at the margin of social

attention, and this limits her influence. Agent 3, on the other hand, is the most popular agent

in the network, yet he is considered to be quite ignorant regarding the topic in question. As a

result, his initial belief will be heavily discounted by the other agents.

The following remark follows directly from expression (21).

Corollary 1. The expertise-driven component of social influence is determined by the relative

initial expertise (that is, precision of the information) of each agent; any changes in absolute

expertise matter only inasmuch as they alter relative precisions.

As the above statement indicates, it is relative, not absolute precision that matters for the

application of Bayes rule under the assumption that every agent i has a Beta(β, δ) prior distribution for the
probability of a delay, p∗, where β = bi (0)πi (0) and δ = (1−bi (0))πi (0). Beta distribution is the conjugate prior
of the Bernoulli distribution; for a more in-depth discussion, see Pham-Gia (2004)

26



limiting beliefs. Note that this refers to an agent’s relative initial expertise with respect to all

other agents in the network, not only his or her neighbours; any effects due to differences

in connections or position in the network are captured by the popularity-driven component,

ci . This is a consequence of the assumption of strong connectedness of the network.

The result in Theorem 1 is interesting from both a theoretical and an empirical point of

view. Not only it is straightforward to see whether important agents derive their influence

from their position in the network or the information they possess, but it is also easy to see

how a small change in the information precision of some agent, or a rewiring of his links,

would affect his social influence as well as the consensus beliefs. This could have direct

implications on how some social planner could intervene in order to facilitate or disrupt the

flow of information in a network.

4.2 Constant versus dynamic weights and the role of uninformed agents

Another interesting observation is that, under the dynamic average-based updating process,

even agents without any credible initial information can affect consensus beliefs. This is

because although their initial expertise may be zero, they can affect the beliefs of their

neighbours in subsequent periods by passing on second-hand information. Hence, despite

that their own social influence will be zero, they will affect the social influences of the other

agents, possibly unevenly, through their effect on eigenvector centralities c.

This is a compelling finding, since as empirical literature has shown, information often orig-

inates from a small number of individuals. In many cases, acquiring first-hand information

may be costly in terms of time and effort. Hence, a large number of people prefer to ob-

tain their information indirectly, through a minority of expert or well-informed individuals,

something that Galeotti and Goyal (2010) called the law of the few. A prominent example

are online communities such as network forums. It is therefore important to understand

the role that the initially ignorant agents play in the information diffusion process once they

have learned from the experts.

This, however, may not be very clear under the canonical average based updating process,

since weights have assumed to be constant. Hence if agents with no information receive

zero initial weight from their neighbours, this will be carried over ad infinitum. As a result

they will be completely ignored, and their presence will have no impact on the consensus

beliefs or the social influence of the other agents. The following example shows how the

predictions of the dynamic model introduced in this paper can differ from those of the base-
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line DeGroot model.

Example 5. Let us revisit the group of investors introduced in Example 3. Recall that they are

interested in forecasting as accurately as possible the profits of an imports firm, Harry Lime

& Co., before the official announcement is made. Towards this, they communicate with their

contacts, and exchange information. The communication pattern is captured by Network A.

Investors 1 and 5 have been following the imports industry closely, so they are the experts in

this example. Investor 2, on the contrary, has no information at all about the developments in

HLC or the imports industry in general, and hence relies entirely on second-hand information

from her contacts.

Investors’ popularity (ci), initial relative and absolute expertise (π̃i(0) and πi(0)), and their

social influence at the consensus under the dynamic updating process (w(∞)
i ) and the baseline

DeGroot model (γ(∞)
i ) are given in Table 5. In Figure 5.A.I node size represents popularity, while

a darker colour represents higher expertise.

Under the dynamic updating process, the agents whose initial belief has the highest social in-

fluence (w(∞)
i ) is agent 5. On the contrary, agent 2 has zero social influence: since she has

zero expertise (π2(0) = 0), her initial belief (whatever this may be) will have no impact on the

consensus belief.17 Despite that, agent 2 cannot be ignored, since she has some role to play

in the information diffusion process, and hence in the formation of the consensus belief. In

a network without agent 2, the most influential agent would be agent 3, ranks just third if

agent 2 is present. The reason is that although she is completely uninformed, she can learn

from other agents who possess better information (including her neighbour agent 5, who is one

of the leading experts in this network). This way she can contribute in propagating their views,

increasing thus their influence. Indeed, without agent 2, agents 1 and 5 would be less popular,

and hence less influential. Notice that agent 2 was chosen to be one of the least popular agents

in the network; the error from ignoring a more popular agent on the grounds of being initially

ignorant could be significantly larger.

17Zero expertise in this case would imply that the signal of the “ignorant” agent originates from a normal
distribution with infinite variance. Although this would not be a well-defined probability distribution, it can
be still used as a “starting point” to model cases where the signal is uninformative, or the agent is missing
prior information. In the literature, such distributions are often called improper priors. Using them should
not be a problem as long as they are not over-interpreted (as, for example, representing total ignorance), and
the posterior they give rise to is a proper distribution (see, for example, Robert, 2007, chapters 1.5 and 3.5).
Alternatively, zero precision could be thought of as an arbitrarily low positive precision, due to a signal from
a normal distribution with very high variance. Although these two interpretations are not equivalent, treating
them as such would be harmless given their limited use in the context of this simple example.
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Example 5: The role of ignorant agents

Figure 5.A.I Figure 5.A.II

with agent 2 without agent 2

i π̃i(0) (πi(0)) ci
w

(∞)
i

(dynamic)

γ
(∞)
i

(DeGroot)
ci

w
(∞)
i

(dynamic)

γ
(∞)
i

(DeGroot)

1 0.254 (1.8) 0.167 0.239 0.229 0.162 0.208 0.229

2 0 (0) 0.129 0 0 n/a n/a n/a

3 0.211 (1.5) 0.198 0.237 0.271 0.241 0.257 0.271

4 0.141 (1.0) 0.129 0.103 0.113 0.162 0.116 0.113

5 0.254 (1.8) 0.188 0.270 0.229 0.194 0.248 0.229

6 0.171 (1.0) 0.188 0.150 0.157 0.241 0.171 0.157∑
1 (7.1) 1 1 1 1 1 1

Table 5.A

This is not the case, however, in the baseline DeGroot model. If the time-constant direct in-

fluences γij are assumed to be the optimal first-period weights, as given by expression (3), the

direct influence of agent 2 will be zero in all periods. This not only implies that her initial

opinion would be completely ignored, but also that she will keep being ignored, even when she

would have accumulated knowledge from her neighbours. As shown in Table 5, the presence of

uninformed agents such as investor 2 can be completely ignored in the DeGroot model.

Figure 5.A.II shows the evolution of investor 2’s direct influence on her neighbours over time.

In the beginning, her relative expertise is zero, and hence receives no attention from investors 1

and 3 (γ12(1) =γ52(1) = 0). Yet, in the next period, investor 1 becomes interested in her belief

since it potentially contains information from agents that investor 1 cannot directly observe (in

this case, investor 3). The same applies to investor 5. Hence, in the dynamic model, agents
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adjust the weights they assign to investor 2’s belief in order to account for the second-hand

information she possesses in periods t > 1.

There are two remarks worth bringing forth before concluding the discussion of the above

example. First, an alternative approach using the DeGroot model would be to let agents

account for possible information that an initially uninformed neighbour may obtain later

on, and assign a positive fixed weight to him. This would nevertheless have to be quite

arbitrary, and would require at least some partial knowledge about the uninformed agent’s

neighbours, or even about the neighbours of his neighbours, and so on. An educated guess

would work in this case, but if agents are assumed to trust their neighbours reported ex-

pertise, as they trust their reported beliefs, the dynamic-weights process could be a more

intuitive approach for them to follow.

Second, the above example shows that under DeGroot updating, decomposing an agent’s

social influence into a popularity-driven and an expertise-driven part may not be as straight-

forward, at least with respect to the measures used in the dynamic approach (eigenvector

centrality and information precision). Agents 1 and 5 have the same expertise, and despite

the fact that agent 5 is more popular than agent 1, they end up having the same social in-

fluence. This suggests that the determinants of social influence in the DeGroot model could

be more difficult to pin down.

4.3 Network-induced distortion

Recall that according to Theorem 1, agent i’s social influence will be given by

w
(∞)
i = αc,π ciπ̃i(0). (21)

It can be easily seen that in the benchmark case of a complete network it will hold that αc,π =

n and ci = 1
n for all agents i ∈ N . It follows then that every agent’s social influence will be

equal to his or her true relative expertise, that is, w(∞)
i = π̃i(0). However, the communication

pattern dictated by an incomplete network, in combination with the failure of agents to

account for repetitions of information, induces a distortion on the distribution of social

influences. In expression (21), this network-induced distortion of agent i’s influence is

captured by

di := αc,πci .

Agents with di > 1 enjoy greater social influence than the one justified by their expertise,
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while agents with di < 1 see their influence weighted down due to the network.

Notice that (21) can be rewritten as

w
(∞)
i = ĉi πi(0)

where ĉi := 1∑n
i=1 ciπi(0)ci is an alternative normalisation of the vector of eigenvector cen-

tralities. Nevertheless, the formulation in (21) is preferable for two reasons. First, if both

precision and centrality measures are normalised to sum up to 1, it is much clearer to see

how they interact and how much each factor contributes to the agents’ social influence. Sec-

ond, the scalar αc,π has a nice intuitive interpretation: it captures the distortion in network

G, that is, it can be readily seen that

αc,π =
∑
i∈N

di .

Yet, since this measure depends on the size of the network, it would be more meaningful to

scale it by the size n of the population in the network:

αc,π0 :=
1
n
αc,π . (22)

The following statement follows directly form the definition ofαc,π0 .

Corollary 2. The following relationship exists between scaled distortion in G, αc,π0 , and the

covariance between popularity and expertise in G, Cov[c, π(0)]:

Cov[c, π(0)] > 0⇐⇒αc,π0 < 1

Cov[c, π(0)] = 0⇐⇒αc,π0 = 1 (23)

Cov[c, π(0)] < 0⇐⇒αc,π0 > 1. ♦

Based on the above result, three different patterns of expertise/popularity allocation emerge:

Pattern A αc,π0 < 1 : An α smaller than 1 suggests that more centrally positioned agents

will on average possess more precise information. An example is a star network with the

central agent having higher expertise than the peripheral agents. In that sense, α can be

a measure of how the network affects “inequality” (in terms of influence): networks with

smaller α reinforce the influence of agents who would anyway be influential due to their

high precision.

Pattern B αc,π0 = 1 : There is zero correlation between agents’ position in the network and

the precision of their signals. This will be the case if all agents have the same popularity,

such as for example, in a circle, a line, or a complete network. Another case that induces
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α= 1 is that in which all agents have the same initial expertise, irrespectively of the structure

of the network. Note thatα= 1 can arise even in cases in which agents differ from each other

both in popularity and expertise.

Pattern C αc,π0 > 1 : In this case it is the less central agents who possess on average more

precise information. A star network with the agent in the centre having less precise infor-

mation than the average precision in the network is such an example.

Notice that, similarly to the canonical DeGroot model, learning in the present model will be

suboptimal in general. It can be shown that in the DeGroot model, the consensus belief will

be correct only if the matrix of direct influences. Γ , is balanced, that is, if and only if

n∑
j=1

gijγjj = 1

for all agents i ∈ N (see DeMarzo et al. (2003), Theorem 2). Under the dynamic model

introduced above, it suffices if all agents in the network are equally popular.

5 Efficiency of learning and some policy implications

The analysis in the above section establishes a straightforward relationship between the

characteristics of the individuals in a network, in terms of expertise and popularity, and

their social influence. It moreover quantifies the degree to which the network distorts in-

formation as the latter flows through it: the opinions of popular individuals get to be heard

more, and hence receive more attention than what their informational value would justify.

Conversely, the opinions of some less popular but better informed agents are underweighted

compared to the optimum.

A question that arises naturally following the preceding discussion is whether some net-

work configurations, or some information allocation patterns, favour learning more than

others. The answer to this has direct policy implications. Assume, for example, that provid-

ing information to individuals is costly. What are the characteristics of the individual or the

organisation that a policy maker should target in order to better inform society about the

benefits of a new technology, or the right measures to help prevent a disease? Conversely, if

the purpose is to disrupt the flow of information, and create confusion in a criminal organi-

sation, which member should be given false information?

In order to be able to provide answers to such questions, some measure of efficiency of

the learning process should be introduced. The obvious candidate would be the expected
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deviation of the consensus belief from the true value of the parameter of interest, θ∗. Assume

that, as discussed in Section 3, the initial belief bi(0) of each agent i is equal to realisation

of a signal si . All agents’ signals can be stacked into a vector s := [si]i∈N . Then the consensus

bias in network G is defined as

Bias(∞)
G (θ∗, s) := E

[
b(∞) −θ∗

]
. (24)

Hence, any norm of Bias(∞)
G (θ∗, s), or simply its absolute value, in case that θ∗ is a scalar,

could potentially serve as an efficiency measure. It turns out, however, that if the signals

that agents receive before the beginning of the communication process are unbiased, so will

be the consensus belief as well.

Lemma 1: Unbiasedness of the Updating Process

Let agents form their initial beliefs b(0) as the realisations of some independent signals,

stacked into a vector s. Assume that these signals are unbiased, so that E[si] = θ∗ for

all agents i ∈ N . Then, the consensus belief under the dynamic average-based updating

process will be unbiased

Bias(∞)
G (θ∗, s) = 0,

that is,

E
[
b(∞)

]
= θ∗.

Notice that the above lemma applies to the baseline DeGroot as well as the dynamic average-

based updating process. An important remark is that the consensus belief will be equal to

the true value of the parameter in question only in expectation. In fact, if the state space

for that parameter is infinite, as it is the case in Examples 3 and 4, the probability of the

consensus belief being equal to the true state of the world will be zero.

Interestingly enough, a utility-based approach can help us motivate a more meaningful

measure for the efficiency of the learning process. Assume that agents in the network intend

to use the information they acquired through this communication process to take a decision.

Examples could be, among other, the decision to pursue university education, to buy a

product or a service (Example 4), or invest in a financial asset (Examples 3 and 5). Such

choices will in general depend on each agent’s preferences or constraints (income, time,

credit constraints, etc). For the purpose of the present analysis, though, it will be simpler

to focus on a very basic case: individuals wish to estimate the unknown parameter θ∗ as
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accurately as possible, since any deviations would be costly. The payoff of each agent i can

be expressed then by a quadratic loss function

ui(θ
∗, b(∞)) = −(b(∞) −θ∗)2. (25)

it follows then that the expected utility of agent i before the realisation of the signals will

be captured by a widely used statistical measure: (the negative of) the mean squared error

of b(∞),

E
[
ui(θ

∗, b(∞))
]

= −E
[
b(∞) −θ∗

]2
= −MSE

[
b(∞)|θ∗

]
.

It is well known though that if an estimator is unbiased, its mean squared error collapses to

its variance (see, for example, Greene, 2008, Definition C.4). Hence it holds that

E
[
ui(θ

∗, b(∞))
]

= −Var
[
b(∞)

]
.

Maximising, therefore, expected social welfare in that case would amount to minimising the

variance of (the estimator of) the consensus belief.

Definition 5: Quality of Assessments Efficiency of Learning

Consider two disjoint sets of agents, N and N ′, with the communication pattern within

each population described by a strongly connected network, G and G′ respectively. Assume

that before communication begins, agents receive some independent, noisy, but unbiased

signals about a common true state of the world, θ∗. These signals follow distributions

fi for all i ∈ N , and f ′j for all j ∈ N ′. Denote the consensus belief in each network by

b(∞) and b′ (∞) respectively. Then b(∞) will be said to be a better assessment than b′ (∞) (or

equivalently b′ (∞) to be a worse assessment than b(∞)) if

Var
[
b(∞)

]
< Var

[
b′ (∞)

]
If, moreover, it holds that ∑

i∈N

πi(0) ≤
∑
j∈N ′

πj (0),

then the learning process in network G with initial expertise distribution π(0), will be

relatively more efficient than the learning process in network G′ with initial expertise dis-

tribution π′(0).

The first part of the above definition states that a consensus belief is preferable to another

if its ex ante (before the realisation of the signals) variance around the mean is smaller. The
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second part defines the learning process in a communication network as relatively more effi-

cient than that in another network, if the agents in the former can reach a better assessment

of the unknown parameter, having in aggregate access to the same or more noisy informa-

tion. This may depend on different network configurations, different distribution of initial

expertise across the agents in the network, or both.

Having introduced the appropriate framework, we can now study some of the issues raised

above. As standard statistical analysis suggests, more precise information —a less noisy

signal— unambiguously decreases the mean squared error of an unbiased estimator. In the

present setup, though this is not always the case. In fact, providing an agent with better

information can lead to a worse assessments, and decrease social welfare. This is demon-

strated through an example.

Example 6. Let us return to Example 4, where the agents in Network B would like to estimate

the probability of a delay that would cause them to miss their connection flight. In this setup,

the precision of an agent’s signal is captured by the number of times this agent has drawn an

observation from the true distribution. Hence, agents who have flown Carcosa Air more times

in the past have better initial information, or a less noisy signal about the true probability of

such delays.

Air Carcosa believe that people have overestimated the probability of delay. In order to remedy

that before the upcoming conference, they decide to provide more information to some agent in

the network (for example, offer him or her a free flight). Agent 3 is the most popular economist

in that network, which may, intuitively, make him the most suitable candidate for that purpose.

As shown, however, in Table 6.B.I, the learning process will become less efficient, since it will

lead to a worse assessment, despite the improvement in aggregate initial expertise. That is, the

ex ante expected error will increase although, ceteris paribus, one of the agents gets access to

better information.

The above finding may seem quite surprising at a first glance. Some intuition can be pro-

vided perhaps based on Corollary 1, and the fact that an increase in an agent’s initial exper-

tise implies a decrease in all other agents’ relative initial expertise, and hence their social

influence. More specifically, improving agent i’s information gives rise to two effects. First,

it decreases the variance of that agent’s signal, and hence the aggregate variance in the net-

work. It follows from Definition 5 that this effect tends to improve the assessment. There is,

however, a second-order effect: as expression (21) implies, increasing an agent’s expertise

35



Example 6: More information can hurt

Figure 6.B

measure
before

additional
info

after
additional

info

distortion (αc,π) 4.914 4.812

scaled distortion
(αc,π0)

1.203 1.229

MSE
[
b(∞)|p∗

]
0.0183099 0.0183093︸                             ︷︷                             ︸

MSEafter −MSEbefore 6.632 ∗ 10−7

Table 6.B.I

before additional info after additional info

i ci π̃i(0) (πi(0)) w
(∞)
i π̃′i(0) (π′i(0)) w

′(∞)
i

1 0.094 0.222 (14) 0.154 0.219 (15) 0.149

2 0.173 0.111 (7) 0.142 0.109 (7) 0.137

3 0.319 0.048 (3) 0.112 0.063 (4) 0.144

4 0.146 0.206 (13) 0.221 0.203 (13) 0.213

5 0.094 0.270 (17) 0.188 0.266 (17) 0.181

6 0.173 0.143 (9) 0.183 0.141 (9) 0.176∑
1 1 (63) 1 1 (64) 1

Table 6.B.II

makes him or her ceteris paribus more influential. If agent i was already more influential

than it would be justified by his or her initial expertise, providing that agent with better in-

formation could increase network distortion. This is because other agents, who may possess

better information than agent i even after his or her signal improves, will see their social

influence decrease further below the optimum. This was the case in Example 6 above with

agent 3.

A more general result is given below.

Proposition 4: Conditions for Welfare-improving Policy Interventions

Consider a strongly connected network G, where agents update their beliefs according to

dynamic average-based updating process. Assume that agents’ signals are independent
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and follow a normal distribution, si ∼ N
(
θ∗, σ2

i

)
where πi(0) := 1

σ2
i
, or a binomial distri-

bution, si ∼ Bin (mi , θ∗) where πi(0) := mi .18Then a small increase in agent i’s expertise

leads to a better assessment if and only if

ci < 2

∑n
j=1 c

2
j π̃j (0)∑n

j=1 cjπ̃j (0)
(26)

The above proposition shows that better information leads to better assessments only if it is

not given to excessively popular agents.

6 Conclusions

The present work contributes to the literature on boundedly rational social learning by

proposing a variant of the DeGroot model that accounts for the determinant of social in-

fluence. Under the canonical average-based updating process, agents revise their beliefs by

weighting the opinions of their peers; the framework introduced in this paper enables them

to revise the weights too. Although the introduction of this new element constitutes a step

towards a more rational, Bayesian approach, the updating process remains unambiguously

naïve: agents’ updated beliefs are still just weighted averages of those of their neighbours,

and do not account for possible repetitions of information. As a result, the simple and in-

tuitively appealing mechanism behind the standard DeGroot model is retained. Moreover,

empirical observations, such as agents’ inability to account for the repetition of information,

and the subsequent emergence of persuasion bias, emerge in the model as well.

At the same time, however, the richer structure introduced in this paper provides us with

a deeper insight into the determinants of social influence. In particular, as shown in The-

orem 1, each agent’s social influence is driven by two components (apart from a network-

specific effect, common for all agents): their popularity, as captured by their eigenvector

centrality, and their expertise, as captured by the relative precision of their initial beliefs.

Apart from providing an better understanding of the origins of social influence, the above

result has further important implications. As it suggests, even agents with very little or no

expertise at all can contribute to social learning: although their direct influence will be ini-

18In Examples 3 and 5 agents signals are drawn from normal distribution, while in Examples 4 and 6 signals
are observations from a binomial distribution.
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tially zero, they may paly an important part in the information diffusion process, and even

end up being the king-makers. Ignoring the presence of such agents would lead to miscal-

culation of the other agents’ influence, since the popularity of the uninformed agents’ peers

would be underestimated. Hence it may be a more suitable tool to analyse network where

the majority of information originates from a small number of experts.

Furthermore, the breakdown of social influence into its primary constituents has significant

policy implications. First, the amount of information that a social planner needs to have in

order to estimate the agents’ influences is lower than under the DeGroot model. An assess-

ment of an agent’s relative expertise (information precision) and popularity (eigenvector

centrality) suffices to get a rough measure of their social influence. Although these infor-

mational requirements are still quite strong, they are much milder than the corresponding

requirement in the DeGroot model (complete knowledge of the network structure). Sec-

ond, social influence is described by a mathematically simple formula, expressed in terms of

agents’ popularity and expertise. This enables the use of comparative statics, and facilitates

the design and evaluation of targeted policy interventions. Interestingly enough, it turns

out some interventions may have an adverse effect even if they increase the aggregate infor-

mation that is available in the network. A mistargeted information campaign, for example,

could lead society to more inaccurate estimates of the true state of the world.

The present paper studies only the asymptotic behaviour of the learning process. In cases

where convergence is fast, this can be a good approximation of the evolution of the short-

term dynamics of the model. If, however, convergence of beliefs is slow, as it could be under

the presence of homophily (Golub and Jackson, 2012), the finite dynamics of the model

become more relevant. In the DeGroot model, the speed of convergence is captured by the

subdominant eigenvalue of the matrix of direct influences. In the case with dynamically

updated weights though, as Federgruen (1981) suggests, this is not as straightforward.

Finally, it would be interesting to bring the model proposed by this paper to the data, and

test its predictions against those of the standard DeGroot model in different setups. Given,

however the high informational requirement of such a project, the relevant data would

ideally be collected through a field lab experiment similar to the one conducted by Chan-

drasekhar et al. (2015).
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ACEMOĞLU, D., M. A. DAHLEH, H. LOBEL, AND A. OZDAGLAR (2010): “Bayesian learning in social

networks,” The Review of Economic Studies, 78, 1201–1236 .

ANTHONISSE, J. M. AND H. TIJMS (1977): “Exponential convergence of products of stochastic ma-

trices,” Journal of Mathematical Analysis and Applications, 59, 360–364 .

BONACICH, P. (1972): “Factoring and weighting approaches to status scores and clique identifica-

tion,” The Journal of Mathematical Sociology, 2, 113–120 .

BONACICH, P. AND P. LLOYD (2001): “Eigenvector-like measures of centrality for asymmetric rela-

tions,” Social Networks, 23, 191–201 .

CHANDRASEKHAR, A. G., H. LARREGUY, AND J. P. XANDRI (2015): “Testing models of social learning

on networks: Evidence from a lab experiment in the field,” NBER working paper no. 21468 .

CHATTERJEE, S. AND E. SENETA (1977): “Towards consensus: Some convergence theorems on re-

peated averaging,” Journal of Applied Probability, 14, 89–97 .

CHOI, S., D. GALE, AND S. KARIV (2008): “Sequential equilibrium in monotone games: A theory-

based analysis of experimental data,” Journal of Economic Theory, 143, 302–330 .

CONDORCET, M. J. A. N. C. (1785): Essai sur l’application de l’analyze à la probabilité des décisions

rendues à la pluralité des voix, Paris, France: Imprimérie Royale .

DEGROOT, M. H. (1974): “Reaching a consensus,” Journal of the American Statistical Association,

69, 118–121 .

DEKKER, R. AND G. ENGBERSEN (2014): “How social media transform migrant networks and facil-

itate migration,” Global Networks, 14, 401–418 .

DEMARZO, P. M., D. VAYANOS, AND J. ZWIEBEL (2003): “Persuasion bias, social influence, and

unidimensional opinions,” The Quarterly Journal of Economics, 118, 909–968 .

FEDERGRUEN, A. (1981): “The rate of convergence for backwards products of a convergent se-

quence of finite Markov matrices,” Stochastic Processes and their Applications, 11, 187–192 .

GALE, D. AND S. KARIV (2003): “Bayesian learning in social networks,” Games and Economic Be-

havior, 45, 329–246 .

GALEOTTI, A. AND S. GOYAL (2010): “The law of the few,” American Economic Review, 100, 1468–

1492 .

39

http://dx.doi.org/10.1287/moor.1120.0570
http://restud.oxfordjournals.org/content/78/4/1201
http://www.sciencedirect.com/science/article/pii/0022247X77901147
http://dx.doi.org/10.1080/0022250X.1972.9989806
http://www.sciencedirect.com/science/article/pii/S0378873301000387
http://stanford.edu/~arungc/CLX.pdf
http://www.jstor.org/stable/3213262
http://www.sciencedirect.com/science/article/pii/S0022053108000471
http://gallica.bnf.fr/ark:/12148/bpt6k417181/f4
http://www.tandfonline.com/doi/abs/10.1080/01621459.1974.10480137
http://dx.doi.org/10.1111/glob.12040
http://qje.oxfordjournals.org/content/118/3/909
http://www.sciencedirect.com/science/article/pii/030441498190003X
http://www.sciencedirect.com/science/article/pii/S0899825603001441
http://www.aeaweb.org/articles.php?doi=10.1257/aer.100.4.1468


GOLUB, B. AND M. O. JACKSON (2010): “Naïve learning in social networks and the wisdom of

crowds,” American Economic Journal: Microeconomics, 2, 112–149 .

——— (2012): “How homophily affects the speed of learning and best-response dynamics,” The

Quarterly Journal of Economics, 127, 1287–1338 .

GRANOVETTER, M. S. (1973): “The strength of weak ties,” American Journal of Sociology, 78, 1360–

1381 .

GREENE, W. H. (2008): Econometric analysis, Upper Saddle River, NJ: Pearson Prentice hall, 6th

ed.

HORN, R. A. AND C. R. JOHNSON (1991): Topics in matrix analysis, New York, NY: Cambridge

University Press.

IOANNIDES, Y. M. AND L. DATCHER LOURY (2004): “Job information networks, neighborhood ef-

fects, and inequality,” Journal of Economic Literature, 42, 1056–1093 .

ISAACSON, D. L. AND R. W. MADSEN (1976): Markov chains: Theory and applications, New York,

NY: Wiley.

JACKSON, M. O. (2008): Social and economic networks, Princeton, NJ: Princeton University Press.

LEFEBVRE, R. C. AND A. S. BORNKESSEL (2013): “Social media as a tool in medicine: digital social

networks and health,” Circulation, 127, 1829–1836 .

LEIZAROWITZ, A. (1992): “On infinite products of stochastic matrices,” Linear Algebra and its Ap-

plications, 168, 189–219 .

MEYER, C. D. (2001): Matrix analysis and applied linear algebra, Philadelphia, PA: American

Mathematical Society.

MORETTI, E. (2011): “Social learning and peer effects in consumption: Evidence from movie

sales,” The Review of Economic Studies, 78, 356–393 .

MOSSEL, E., A. SLY, AND O. TAMUZ (2015): “Strategic learning and the topology of social net-

works,” Econometrica, 83, 1755–1794 .

MUELLER-FRANK, M. (2013): “A general framework for rational learning in social networks,” The-

oretical Economics, 8, 1–40 .

PAGE, L., S. BRIN, R. MOTWANI, AND T. WINOGRAD (1999): “The PageRank citation ranking: Bring-

ing order to the Web,” Tech. Rep. 1999-66, Stanford InfoLab .

PERKINS, P. (1961): “A theorem on regular matrices,” Pacific Journal of Mathematics, 11, 1529–1533

.

PHAM-GIA, T. (2004): “Bayesian inference,” in Handbook of beta distribution and its applications,

ed. by A. K. Gupta and S. Nadarajah, New York, NY: Marcel Dekker, Inc., 361–422.

40

http://www.jstor.org/stable/25760379
http://qje.oxfordjournals.org/content/127/3/1287
http://www.jstor.org/stable/2776392
http://www.aeaweb.org/articles.php?doi=10.1257/0022051043004595
http://circ.ahajournals.org/content/127/17/1829
http://www.sciencedirect.com/science/article/pii/002437959290294K
http://restud.oxfordjournals.org/content/78/1/356
http://onlinelibrary.wiley.com/doi/10.3982/ECTA12058/abstract
http://onlinelibrary.wiley.com/doi/10.3982/TE1015/abstract
http://ilpubs.stanford.edu:8090/422
http://msp.org/pjm/1961/11--4/p33.xhtml


ROBERT, C. P. (2007): The Bayesian choice: From decision-theoretic foundations to computational

implementation, New York, NY: Springer Science+Business Media, 2nd ed.

SENETA, E. (1981): Non-negative matrices and Markov chains, New York, NY: Springer Sci-

ence+Business Media, 2nd ed.

TAM, S. M. (1985): “On covariance in finite population sampling,” Journal of the Royal Statistical

Society. Series D (The Statistician), 34, 429–433 .

41

http://www.jstor.org/stable/2987828


Appendix

A Mathematical appendix

A.1 The Hadamard product

This section discusses shortly the Hadamard product matrix operation and some basic re-

sults related to it that are used in the present analysis.

Definition 6: The Hadamard Product

Consider matrices A = [aij ] ∈ Cm×n and B = [bij ] ∈ Cm×n with m, n ∈ N∗. The Hadamard

product19 of A and B, denoted with A ◦B, is defined as the matrix of the scalar products

of their corresponding elements

A ◦B :=
[
aijbij

]
(i,j)∈M×N

∈ Cm×n

whereM := {1, . . . , m} and N := {1, . . . , n}.

Let A, B, C ∈ Cm×n, and consider a conformable matrix of ones, J
m×n := 1

m
1>n , and a scalar

κ ∈ C. The Hadamard product possesses the following properties:

[H.1] Commutativity: A ◦B = B ◦A

[H.2] Associativity: A ◦ (B ◦C) = (A ◦B) ◦C

[H.3] Distributivity: A ◦ (B+C) = (A ◦B) + (A ◦C)

[H.4] Identity element J: A ◦ J
m×n

= A

[H.5]
Distributive
transposition:

(A ◦B)> = A> ◦B>

[H.6]
Compatibility with
scalar multiplication:

κ(A ◦B) = (κA) ◦B = A ◦ (κB)

In addition, consider vectors x ∈ Cm, y ∈ Cn, and define the diagonal matrices Dx :=

diag(x1, . . . , xm) and Dy := diag(y1, . . . , yn). The following observations will be par-

ticularly useful in our analysis:

19Named after French mathematician Jacques Salomon Hadamard (1865-1963). The terms elemntwise, entry-
wise, or Schur product are also encountered in the literature.
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� Pre-multiplying matrix A by a conformable diagonal matrix Dx multiplies every element of

each row i of A by the corresponding element xi of vector x, that is

DxA =
[
aijxi

]
i∈M,j∈N

∈ Cm×n (27)

� Post-multiplying matrix A by a conformable diagonal matrix Dy multiplies every element

of each column j of A by the corresponding element yj of vector y, that is

ADy =
[
aijyj

]
i∈M,j∈N

∈ Cm×n (28)

The above observations give rise to the following properties:

[H.7] [Multiply row i by xi] DxA = A ◦
(
x1>m

)
=

[(
x1>m

)
◦ I

m

]
A

[H.8] [Multiply colm. j by yj] ADy = A ◦
(
1ny>

)
= A

[(
1ny>

)
◦ In

]
Finally, the results below are used in the proofs in part B of this appendix.

[H.9] Dx(A ◦B)Dy = (DxA) ◦ (BDy) = (ADy) ◦ (DxB) = A ◦ (DxBDy)

[H.10]
[
(A ◦B) y1>m

]
◦ I

m
=

(
ADyB>

)
◦ I

m

A proof of the last two statements can be found in Horn and Johnson (1991). More specifi-

cally, property [H.9] is Lemma 5.1.2 in Chapter 5, while property [H.10] follows immediately

from Lemma 5.1.3 and the definition of Hadamard product.

A.2 Non-negative matrices and networks

For the sake of convenience, some standard elements of linear algebra theory are presented

below.

Definition 7: Irreducible and Primitive Matrices

� A matrix P ∈ {0,1}n×n is called a permutation matrix if in each row and in each column

there exists exactly one entry equal to 1, with all other entries being equal to 0.

� A matrix A ∈ Cn×n is said to be a reducible matrix if there exists a permutation matrix P

such that

P>AP =

 X
k × k Y

k ×n-k

O
n-k×k Z

n-k ×n-k

 (29)
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where X, Z are square matrices, and O is a matrix of zeros.

� A square matrix is called irreducible if it is not reducible.

� A non-negative irreducible matrix is said to be a primitive matrix if only one of its eigen-

values lies on its spectral circle.

Note that in some older papers, the terms indecomposable and regular are used respectively

instead of irreducible and primitive. The following lemma establishes a relationship be-

tween the properties of an adjacency matrix and the structure of the network it represents.

Lemma 2: Matrix Properties and Network Structure

� A network G is strongly connected if and only if its adjacency matrix G is irreducible.

� A strongly connected network G is aperiodic if and only if its adjacency matrix G is

primitive.

Proof. To prove the first statement, it suffices to show that its contrapositive holds true. In

other words, it is equivalent to proving the following:

Statement [CP]. A network G = 〈N , E〉 is not strongly connected if and only if its

adjacency matrix G is reducible.

First, notice that pre- and post-multiplying a square matrix respectively by a permutation

matrix P and its transpose P>, reorders the rows and the columns of matrix in the same way.

Hence the transformation

G̃ := P>GP (30)

simply relabels the agents in N without essentially changing the structure of the network;

matrix G̃ represents the same network as G, but with the agents relabelled. More formally,

transformation (30) can be seen as applying a bijection f
N

:N →N from the set of nodes to

itself, and a corresponding bijection f
E

:N 2 →N 2 with f
E
(i,j) :=

(
f
N

(i), f
N

(j)
)

from the set

of edges of G to itself. Except for the node labels, network G̃ = 〈f
N

(N ), f
E
(E)〉, represented

by adjacency matrix G̃, will be identical to G. An equivalent, therefore, to Statement [CP] is

that G̃ is not strongly connected if and only if G is reducible. For convenience, denote the
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new labels of the nodes of the transformed network with li , so that f
N

(N ) = {l1, l2, . . . , łn}.

Notice that if G is reducible, then by (29) matrix P can chosen so that

G̃ =

 X
k × k Y

k ×n-k

O
n-k×k Z

n-k ×n-k


It can now easily be seen from G̃ that no directed path exists from any of the nodes in

N isol := {lk+1, lk+2, . . . , ln} to any of the nodes in Nmain := {l1, l2, . . . , lk}, since the for-

mer group pay attention only to agents within Nisol. This suggests that network G̃, and

hence network G, are not strongly connected. This proves the if part of Statement [CP].

To prove the only if part of Statement [CP], assume that network G is not strongly connected.

Then there must exist (at least) two nodes i, j ∈ N such that there are no directed paths

from node i to node j. Consider the set of nodes M(j) ⊂ N consisting of those and only

those nodes h ∈ N such that there is a directed path from node h to node j, and denote

its cardinality with m, where 1 ≤ m ≤ n-1.20 Since there is no directed path from node i to

node j, it must be that i ∈ N \M. Now consider a transformation similar to (30) that assigns

labels from l1 to lm to the nodes in M(j). This can be implemented through a bijection f
N

such as the one described above, with f
N

(M) = {l1, . . . , lm} and f
N

(N\M) = {lm+1, . . . , ln},

together with the corresponding bijection f
E
. Then the transformed matrix can be written

as

G̃ = P>GP =

 X̃
m×m Ỹ

m×n-m

W̃
n-m×m Z̃

n-m×n-m


where block X̃ captures the edges among the nodes in M, block Z̃ the edges among the

nodes in N \M, block Ỹ the edges from nodes inM to nodes in N \M, and block W̃ the

edges from nodes in N \M to nodes in M. Observe, however, that there should not exist

any edges from nodes outsideM towards nodes inM. Suppose towards a contradiction that

there existed such an edge, emanating from node q ∈ N \M. This would imply that there

is a directed path from node q to node j, and hence q ∈M by the definition ofM. Since no

such edges exists, it must be that W̃ =O
n-m×m , suggesting that G is a reducible matrix. This

completes the proof of the first statement in Lemma 2.

The second statement follows directly from Theorem 1 in Perkins (1961) and the definition

of an aperiodic network (see Definition 1). The statement is presented in the same form as

Lemma 2 in Golub and Jackson (2010). ♦

20Notice thatM(j) will be non-empty since j ∈M(j).
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A.3 The Perron-Frobenius theorem

The following statement of the Perron-Frobenius theorem,21 is based on Meyer (2001),

Chapter 8.3, and has been adapted to the context of the present paper.

Proposition 5: The Perron-Frobenius Theorem

Let G ∈ Rn×n+ be a non-negative, irreducible square matrix, and denote its spectral radius

with ρ
G

. The following statements hold true.

[PF.1] There exists a simple eigenvalue of G equal to ρ
G

.

[PF.2] There exists a positive stochastic eigenvector corresponding to ρ
G

, that is, a vector

p > 0n such that Gp = ρ
G
p and ‖p‖1 = 1. This is called the Perron vector of G.

[PF.3] The Perron vector is the only non-negative eigenvector of G up to a positive multi-

ple.

B Proofs

B.1 Existence and uniqueness of eigenvector centrality

We begin by establishing that adjacency matrix G, and hence its transpose, G>, is non-

negative and irreducible; thus the Perron-Frobenius theorem applies (see Section A.3).

Non-negativity holds true by definition, since G ∈ {0,1}n×n, while irreducibility follows from

Lemma 2 and the assumption that G is strongly connected.

It can now be readily shown that eigenvector centrality is a well defined measure, that is, it

exists and it is unique in any strongly connected network G. To establish existence, notice

that [PF.1] suggests that ρ
G

will be an eigenvalue of G>, and hence, by [PF.2], c will be

the Perron vector of G>. It will therefore be a positive vector, and thus meaningful as a

measure of centrality, since it will not contain any negative or non-real entries. Uniqueness

follows from the fact that the Perron vector is the only positive eigenvector of G (see [PF.3]).

21A first version of the theorem, applying to positive matrices, was proved by German mathematician Oskar
Perron in 1907. Five years later his colleague Ferdinand Georg Frobenius showed that most of Perron’s results
carry over to non-negative matrices, provided that they are irreducible.
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B.2 Proof of Proposition 3

Notice that network G is aperiodic, since it has been assumed that agents are out-neighbours

of themselves (Perkins, 1961, Theorem 1). Then Lemma 2 implies that matrix G will be

primitive. Given that, existence of the limiting vector w(∞), and hence existence of a (defini-

tive) consensus can established using Proposition 2 in the present paper and the corollary of

Theorem 5 in Chatterjee and Seneta (1977). Uniqueness of the consensus follows directly

from Theorem 3 in the latter paper.

B.3 Proof of Theorem 1

W(t) =

t∏
κ=1

Γ (κ)

=

t∏
κ=1

[(
Gκπ(0)1>n

)
◦ In

]−1 [
G ◦1n

(
Gκ−1π(0)

)
>
]

=

t∏
κ=1

[(
Gκπ(0)1>n

)
◦ In

]−1
G

[(
Gκ−1π(0)1>n

)
◦ In

]
by [H.8]

=
[(
Gtπ(0)1>n

)
◦ In

]−1
G

[(
Gt−1π(0)1>n

)
◦ In

] [(
Gt−1π(0)1>n

)
◦ In

]−1
G

[(
Gt−2π(0)1>n

)
◦ In

]
· · ·

· · ·
[(
G2

π(0)1>n
)
◦ In

]−1
G

[(
Gπ(0)1>n

)
◦ In

] [(
Gπ(0)1>n

)
◦ In

]−1
G

[(
π(0)1>n

)
◦ In

]
=

[(
Gtπ(0)1>n

)
◦ In

]−1
G . . . G︸    ︷︷    ︸
t−1 terms

G
[(
π(0)1>n

)
◦ In

]

=
[(
Gtπ(0)1>n

)
◦ In

]−1
Gt

[(
π(0)1>n

)
◦ In

]
=

[(
Gtπ(0)1>n

)
◦ In

]−1
Gt Dπ(0) (31)

where we have used the properties of Hadamard product discussed in Section A.1 of the Ap-

pendix, and Dπ(0) := diag(π1(0), π2(0), . . . , πn(0)) is a diagonal matrix with the elements

of vector π(0) on its main diagonal.
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Proposition 6

Let G be a strongly connected, aperiodic network with adjacency matrix G. Denote its

spectral radius by ρ
G

, and its Perron vector by p. Then

lim
t→ +∞

(
G
ρ
G

)t
=

pc>

c>p
(32)

PROOF. We know that a network G is aperiodic, and hence strongly connected, if and only

if its adjacency matrix G is primitive, and hence irreducible (Lemma 2). Recall that eigen-

vector centrality is defined as the left eigenvector of G (Definition 2). Then (32) follows

directly from the theorem on primitive matrices and expression (8.3.10) in Meyer (2001).

♦

Now we can use Proposition 6 to obtain an expression for the social influence of the agents.

From (32) it follows that

lim
t→ +∞

W(t) = lim
t→ +∞


(Gρ

G

)t
π(0)1>n

 ◦ In

−1 (
G
ρ
G

)t
Dπ(0)


=

 lim
t→ +∞

(
G
ρ
G

)t
π(0)1>n

 ◦ In

−1

lim
t→+∞

(
G
ρ
G

)t
Dπ(0)

=
[(

pc>

c>p
π(0)1>n

)
◦ In

]−1 pc>

c>p
Dπ(0)

=
[(
pc>π(0)1>n

)
◦ In

]−1

pc>Dπ(0) by [H.6]

=
(
c>π(0)

)−1 [(
p1>n

)
◦ In

]−1

pc>Dπ(0) by [H.6]

=
(
c>π(0)

)−1

Dp
−1pc>Dπ(0)

=
(
c>π(0)

)−1

1n c
>Dπ(0)

=
(
c>π(0)

)−1
1n

(
c> ◦π(0)>

)
by [H.8]

= 1n

(
c>π(0)

)−1 (
c ◦π(0)

)
> by [H.5]

= 1n

(
1>n π(0)

c>π(0)

) (
c ◦ π(0)

1>n π(0)

)
> by [H.6]

= 1n αc,π
(
c ◦ π̃(0)

)
>
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where Dπ(0) := diag(π(0)), αc,π := 1> π(0)
c> π(0) =

∑n
i=1 πi (0)∑n
i=1 ciπi (0) is a scalar that captures the effects of

the network on social influence, and π̃(0) := π(0)
1> π(0) is the vector of relative initial precisions

of the agents in network G.

B.4 Proof of Corollary 1

Consider any change in the agents’ initial expertise, from π(0) to π′(0) that does not affect

relative precisions π̃(0). Then we can write π′(0) = κπ(0) for some κ > 0. From expres-

sion (21), the new social influence of agent i is

w′i = αc,κπciπ̃i(0) =

∑n
j=1 κπj(0)∑n
j=1 cjκπj(0)

ciπ̃i(0) =

∑n
j=1 πj(0)∑n
j=1 cjπj(0)

ciπ̃i(0) = αc,πciπ̃i(0) = wi .

B.5 Proof of Corollary 2

Notice that in this case the sampling fraction relevant for calculating covariance is the entire

network population. Then the standard formula for covariance (see, for example, Tam,

1985) yields

Cov[c, π(0)] =
1
n

n∑
i=1

ci − 1
n

n∑
j=1
cj

 πi(0)−
n∑
j=1
πj (0)


=

1
n

 n∑
i=1

ciπi −
1
n

n∑
i=1

πi −
1
n

n∑
i=1

πi(0) +n
1
n2

n∑
i=1

πi(0)


=

1
n

 n∑
i=1

ciπi −
1
n

n∑
i=1

πi

 , (33)

where the second equation holds true since
∑n
i=1 ci = 1. Then from (33) it follows that

Cov[c, π(0)] > 0 ⇔
n∑
i=1

ciπi >
1
n

n∑
i=1

πi > 0 ⇔ 1
n

∑n
i=1 πi∑n
i=1 ciπi

< 1 ⇔ αc,π0 < 1.

B.6 Proof of Lemma 1

Recall from expression (20) that the consensus belief will be

b(∞) =
n∑
i=1

w
(∞)
i bi(0)

The ex ante expectation of the consensus belief (that is, before the signals are realised, and

the prior beliefs are formed) will be
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E
[
b(∞)

]
= E

 n∑
i=1

w
(∞)
i bi(0)


=

n∑
i=1

w
(∞)
i E[bi(0)]

=
n∑
i=1

w
(∞)
i b(∞)

= b(∞).

B.7 Proof of Proposition 4

From Theorem 1, the ex ante variance of the consensus belief b(∞) is given by

Var
[
b(∞)

]
= Var

 n∑
j=1

w
(∞)
j bj (0)


= α2

c,π

n∑
j=1

c2
j (π̃j (0))2Var

[
bj (0)

]

=


∑n
j=1 πj(0)∑n
j=1 cjπj(0)

2 n∑
j=1

c2
j

 πj (0)∑n
j=1 πj(0)

2

Var
[
bj(0)

]

Var
[
b(∞)

]
=

1(∑n
j=1 cjπj(0)

)2

n∑
j=1

c2
j [πj (0)]2Var

[
bj(0)

]
.

(34)
Let us consider first the case where si ∼N

(
θ∗, πi(0)−1

)
. Then for each initial belief it holds

that Var
[
b(∞)

]
= 1
π(0) , and hence it follows from expression (34) above that

Var
[
b(∞)

]
=

1(∑n
j=1 cjπj(0)

)2

n∑
j=1

c2
j [π̃j (0)]2 1

π(0)

Var
[
b(∞)

]
=

∑n
j=1 c

2
j πj(0)(∑n

j=1 cjπj(0)
)2 .

(35)
We can now calculate how Var

[
b(∞)

]
changes with πi(0):

dVar
[
b(∞)

]
dπi(0)

=
d

dπi(0)


∑n
j=1 c

2
j πj(0)(∑n

j=1 cjπj(0)
)2


=

1(∑n
j=1 cjπj(0)

)4

c2
i

 n∑
j=1

cjπj (0)


2

− 2ci
n∑
j=1

cjπj (0)
n∑
j=1

c2
j πj (0)


50



=
1(∑n

j=1 cjπj(0)
)3

ci n∑
j=1

cjπj(0)− 2
n∑
j=1

c2
j πj (0)

 (36)

Then using (36) we can show that

dVar
[
b(∞)

]
dπi(0)

> 0⇔ ci > 2

∑n
j=1 c

2
j πj(0)∑n

j=1 cjπj(0)
,

which gives condition (26) if the signals are normally distributed.

Consider now the case with si ∼ Bin(πi(0), θ∗). It will then hold that πi(0) := qi + ri , where qi

are the successes and ri the failures in the observations drawn. Assume that based on this

signal, the initial beliefs are formed as

bi(0) :=
qi

qi + ri
=

qi
πi(0)

.

If the expertise πi(0) of the agents (the “sample size”) is known, then it follows that

Var[bi(0)] := Var
[
qi

qi + ri

]
=

1
πi(0)

Var[qi] =
θ∗(1−θ∗)
πi(0)

.

Substituting this into expression (34) gives

Var
[
b(∞)

]
= θ∗(1−θ∗)

∑n
j=1 c

2
j πj(0)(∑n

j=1 cjπj(0)
)2 . (37)

The rest of the proof is similar to the case with si ∼ N
(
θ∗, 1

πi (0)

)
, since expression (37) is

proportional to (35).
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